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The spatiotemporal optical solitons (alias "light bullets") are nondiffracting and nondispersing wavepackets propagating in 
nonlinear optical media. They are localized (self-guided) in two transverse (spatial) dimensions and in the direction of 
propagation due to the balance of anomalous group-velocity dispersion of the medium in which they form and nonlinear 
self-phase modulation. The formation of fully three-dimensional light bullets is one of the most exciting, yet experimentally 
unsolved problems in nonlinear photonics. A brief up-to-date survey of recent theoretical studies of light bullet formation and 
stability in various physical settings is given.  
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1. Introduction 
 
Solitons, or more properly, solitary waves are 

ubiquitous in nature and have been identified in plasmas, 
fluids, optics, atomic Bose-Einstein condensates, biologic 
matter, etc. However, in the past two decades there has 
been an increasing interest in both theoretical and 
experimental study of  localized light structures (alias, 
optical solitons), which overcome either dispersion or 
diffraction [1]-[3]. The temporal or spatial optical solitons 
are special cases of  a larger class of nonlinear confined 
light structures in which both temporal and spatial effects 
are coupled and occur simultaneously. The space-time 
coupling occurring when a pulsed optical beam propagates 
through a nonlinear optical medium leads to unique 
nonlinear effects, such as the spatiotemporal collapse for 
anomalous group-velocity dispersion (GVD) regime, pulse 
splitting if the GVD of the optical medium is normal, and 
the formation of confined, in both transverse spatial 
dimensions, light pulses, which were termed 
spatiotemporal optical solitons [1], [4]-[6].  

Typically, these localized multidimensional optical 
structures are spatially confined on the order of 
wavelength; however it is possible to get sub-wavelength 
solitons in metamaterials containing nanostructured noble 
metal rods embedded in specific nonlinear dielectric 
media. It is worthy to mention that the study of these 
plasmon solitons is now emerging as a distinct research 
direction in the area of nonlinear nano-plasmonics [7]. 
Optical solitons represent the "particle-like" counterpart of 
the more common extended light structures. The optical 
media that might sustain such self-guiding structures 
should be nonlinear, i.e., their refractive index should 
depend on the light intensity. Different kinds of 
nonlinearities of optical materials such as absorptive, 

dispersive, second-order (quadratic), third-order (Kerr-
like) can be used to prevent temporal dispersion/spatial 
diffraction of light beams or both of them. The field of 
temporal/spatial optical solitons emerged from these 
fundamental studies of interaction of intense laser beams 
with matter.  

The research area of optical solitons is now in a 
mature stage; temporal optical solitons are currently 
created in monomode optical fibers and have led to a 
mature photonics technology, whereas spatial optical 
solitons are currently created  in laboratory and are now 
awaiting technological implementation in all-optical 
information processing. However, the spatiotemporal 
optical solitons, alias “light bullets” (LBs), constitute the 
third kind of optical solitons [4,5]. They are spatially 
confined pulses of light, i.e., electromagnetic wave packets 
self-trapped in both space and time and could be used as 
information carriers in future all-optical processing 
information systems. It is worthy to mention that the 
optical solitons in media with a cubic self-focusing 
nonlinearity, obeying the nonlinear Schroedinger (NLS) 
equation, are unstable in two and three dimensions, 
because of the occurrence of optical beam collapse [8,9]. 
However, several possibilities to arrest the intrinsic wave 
collapse were considered, such as the use of quadratic 
nonlinear optical media that support solitons for all 
physical dimensions [10]-[13]. The (2+1)-dimensional 
light bullet formation was achieved in quadratic nonlinear 
crystals by generating the necessary anomalous GVD via 
achromatic phase matching [14]. Other physical settings, 
which are adequate for getting stable light bullet formation 
use saturable [15,16] and nonlocal [17,18] optical media, 
materials with competing nonlinearities [19,20], confining 
two- or three-dimensional optical lattices [21]-[25], and 
periodic (discrete) waveguide structures with controlled 
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diffraction and/or GVD [26]-[29]. The formation of 
multidimensional fundamental and vortex (spinning) 
dissipative solitons in media with gain and loss described 
by the cubic-quintic Ginzburg-Landau equation [30,31], 
and the existence of stable discrete light bullets in one- 
and two-dimensional photonic lattices [32]-[34] were also 
put forward .  

The landmark experimental work [14] reporting the 
formation of a (2+1)-dimensional spatiotemporal optical 
soliton used a very clever scheme to control the GVD 
along one spatial axis. The beam self-trapping occurred 
only along one spatial transverse dimension of a two-
dimensional optical beam. It is well known that by 
reflecting a beam from a diffraction grating, the 
nonspecular orders have their energy wavefront tilted 
relative to their phase velocity wavefront, with different 
spectral components having different tilts; pulse 
compression in time based on this principle was achieved 
by using the cascaded nonlinearity in second-order 
nonlinear optical materials, such as lithium iodate and 
beta-barium borate (BBO) [14]. Quadratic spatiotemporal 
solitons in the cascaded limit with highly elliptically 
shaped beams were generated by using the above 
mentioned second-harmonic generation crystals. Along the 
long axis of the optical beam cross-section, the diffraction 
length was longer than the length of the crystal so that no 
beam diffraction occurred. However, along the short beam 
axis, the diffraction length was about one fifth of the 
crystal length and it is along this transverse coordinate that 
the beam behaved like a spatial optical soliton. The pulse 
width of about 100 fs was used in this experiment, with the 
grating-engineered GVD, to match the dispersion length to 
the diffraction length in order to form a spatiotemporal 
optical soliton (“light bullet”). It was demonstrated that 
along the short beam axis no spreading occurred both in 
space and in time, a characteristic feature of a (2+1)-
dimensional light bullet. Thus for propagation over five 
characteristics lengths, the beam size (pulse duration) was 
about 50 microns (100 fs). It is worthy to mention that in 
this experiment it was also reported, for the first time to 
my knowledge, the formation and the propagation over 
several dispersion lengths of temporal solitons in quadratic 
nonlinear optical media [14].  

This work is organized as follows. In Sec. 2 I briefly 
overview the studies of existence, stability and robustness 
of three-dimensional vortex solitons (vortex tori) in both 
conservative and dissipative settings. The problem of  
formation of stable three-dimensional light bullets in lower 
dimensional photonic lattices is discussed in Sec. 3. 
Section 4 is devoted to the discussion of a few recent,  
innovative physical settings, which are able to support the 
formation of  stable spatiotemporal optical solitons. 
Finally, Sec. 5 concludes the paper. 

 
 
2. Stable spatiotemporal spinning solitons  
 
One peculiar feature of  wavefields is the occurrence 

of vortices within them. A vortex is a singular point in the 
wavefield around which there is a continuous circulation 

of a certain physical quantity. In optics, the localized 
optical vortices (alias optical vortex solitons), have drawn 
much attention as objects of fundamental interest, and also 
due to their potential applications to all-optical 
information processing, as well as to the guiding and 
trapping of atoms. In the core of an optical vortex the 
complex electromagnetic field is equal to zero, however 
the circulation C of the gradient of the phase of the 
complex field on an arbitrary closed contour around the 
vortex core is a multiple of 2π, i.e., C=2π S, where the 
integer S is the topological number of the vortex (“spin”). 
Thus the phase dislocations carried by the wavefront of a 
light beam are associated with a zero-intensity point (a 
vortex core); the phase is twisted around such points 
where the light intensity vanishes, creating an optical 
vortex. It is worthy to mention that unique properties are 
also featured by vortex clusters, such as rotation similar to 
the vortex motion in superfluids. The complex dynamics 
of two- and three-dimensional soliton clusters in optical 
media with competing nonlinearities has been studied too 
[35]-[37]. Various complex patterns based on both 
fundamental  (nonspinning) solitons and vortices were 
theoretically investigated in optics and in the usual BEC 
models governed by the Gross-Pitaevskii equation with 
both local [38]-[40] and nonlocal nonlinearity [41].  

Stable nondissipative spatiotemporal spinning solitons 
(vortex tori) with the topological charge S=1 (see Fig. 1), 
described by the three-dimensional NLS equation with 
focusing cubic and defocusing quintic nonlinearities were 
found to exist for sufficiently large energies [19]. This 
result also holds for the case of competing quadratic and 
self-defocusing cubic nonlinearities [20]. A general 
conclusion of these studies is that stable spinning solitons 
are possible as a result of competition between focusing 
and defocusing optical nonlinearities.  
 

 
 

Fig. 1. Recovery of a light bullet with “spin” S=1 
propagating in a cubic-quintic optical medium, which 
was perturbed at input (10% random noise): (a) 
isosurface plot of the initially perturbed vortex torus and 
(b)  the  self-cleaned  output  soliton.  Here  the nonlinear  
                  wave number k=0.15 (see Ref. 19).  

 
 

We have also performed a comprehensive stability 
analysis of three-dimensional dissipative solitons with 
intrinsic vorticity S governed by the complex Ginzburg-
Landau equation with cubic and quintic terms in its 
dissipative and conservative parts [30,31]. It was found 
that a necessary stability condition for all vortex solitons, 
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but not for the fundamental ones (S=0), is the presence of 
nonzero diffusivity in the transverse plane. The 
fundamental solitons are stable in all cases when they 
exist, while the vortex solitons are stable only in a part of 
their existence domain. However, the spectral filtering 
(i.e., the temporal-domain diffusivity) is not necessary for 
the stability of any species of dissipative solitons. Stability 
domains were found for (3+1)-dimensional vortex solitons 
(vortex tori) with “spin”  S=1, 2, and 3, suggesting that 
spinning solitons with any vorticity S can be stable in 
certain portions of their existence domains [31]. It is 
worthy to mention that the signature of an optical vortex 
with topological charge S can be detected by looking at the 
unique structure of the interference pattern of the vortex 
field with a plane wave (these interferograms  display 
typical “fork-like” dislocations in the vortex core). The 
stable vortex torus is a robust physical object, i.e., it is able 
to absorb the white noise perturbation and to clean up 
itself. The spinning (vortex) soliton can be easily 
generated from a Gaussian spatiotemporal input 
electromagnetic field with a nested vortex;  the Gaussian 
optical field with a phase dislocation at the vortex core 
evolves towards a stable flat-top like vortex torus, see Ref.  
[30,31]. It is worthy to mention that in fluid mechanics it 
was  experimentally observed [42,43] the formation of 
toroidal viscoelastic drops, resembling optical vortex tori. 
Thus a stable toroidal drop of viscoelastic fluid sinking 
through a viscous Newtonian oil was produced. In such a 
highly dissipative medium with a very small Reynolds 
number, a Newtonian vortex ring would be unstable 
(growing in size and slowing down), so it is the additional 
elasticity in the fluid drop that provided a sort of a 
stabilizing effect [42,43].  

The study of localized structures in optics has recently 
identified nonlinear self-similar propagation as a robust 
means of avoiding optical beam or pulse breakup at high 
power [44]-[47]. Spatiotemporally expanding self-similar 
light bullets and vortex torus solutions to the three-
dimensional NLS equation with gain were introduced 
recently [48]. In the absence of an initial vorticity, it was 
demonstrated an expanding similariton with a parabolic 
intensity profile and linear spatiotemporal chirp. 
Expanding vortex torus solutions with a centrally 
embedded phase singularity were also found. Furthermore, 
it was shown by extensive numerical simulations that these 
self-similar solutions of NLE equation with gain are 
nonlinear attractors towards which arbitrarily shaped input 
pulses converge asymptotically [48]. 

 
 
3. Stable spatiotemporal solitons in two- 
     dimensional photonic lattices  
 
A very promising way to arrest the collapse in cubic 

(Kerr-type) focusing media is to use two-dimensional 
nonlinear photonic lattices in a three-dimensional  
environment [21]-[25]. The existence and stability of 
three-dimensional spatiotemporal solitons in self-focusing 
cubic Kerr-type optical media with an imprinted two-
dimensional harmonic transverse modulation of the 

refractive index was studied in detail in Ref. [22]. It was 
demonstrated that two-dimensional photonic Kerr-type 
nonlinear lattices can support stable one-parameter 
families of three-dimensional spatiotemporal solitons 
provided that their energy is within a certain interval and 
the strength p of the lattice potential, which is proportional 
to the refractive index modulation depth, is above a certain 
threshold value. As a consequence of the imprinted two-
dimensional photonic lattice, the nonlinear localized states 
exist only for nonlinear wave numbers (propagation 
constants) larger than some minimum values (the edge of 
the band gap). The minimum propagation constant 
increases with the increase of the lattice strength 
parameter; recall that for the NLS equation the minimum 
propagation constant is equal to zero. Families of three-
dimensional spatiotemporal solitons in two-dimensional 
harmonic lattices exist whenever their energy exceeds a 
certain minimum value and are linearly stable in the 
intermediate-energy regime and for sufficiently high 
lattice strengths. Remarkably, for sufficiently large values 
of the lattice strength parameter p, the Hamiltonian-versus-
energy (soliton norm) curves display two cusps (see Fig. 
2), instead of a single one as in other 2D and 3D 
nondissipative (Hamiltonian) nonlinear dynamical 
systems. This unique two-cusp structure of the soliton 
norm-Hamiltonian diagram is the so-called “swallowtail” 
catastrophe and is quite rare in physics [23,24].  
 
 

 
 

Fig. 2. Typical energy (soliton norm)-wave number-
Hamiltonian diagram for 3D light bullets confined by 2D 
optical  lattices.  Here  the  lattice  strength  parameter is  
                            p=20 (see Ref. 22). 

 
 

Remarkably, this unique swallowtail bifurcation 
occurs also in the study of stability of three-dimensional 
solitons with vorticity S=1 supported by a two-
dimensional harmonic lattice if the lattice strength is large 
enough [25]. Recently we have introduced discrete surface 
light bullets forming in both one-dimensional [32] and 
two-dimensional [33] photonic lattices. We analyzed 
spatiotemporal light localization near the edge of semi-
infinite arrays of weakly coupled nonlinear optical 
waveguides or in the corners and the edges of two-
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dimensional photonic lattices and demonstrated the 
existence and stability (in certain regions of their existence 
domain) of continuous-discrete spatiotemporal surface 
solitons [32,33]. We have shown that their properties, such 
as power (energy) thresholds for their formation are 
strongly affected by the presence of the photonic lattice 
truncation. Recently we analyzed the interactions between 
discrete surface light bullets and we observed a variety of 
collision scenarios and different outcomes, such as soliton 
fusion, soliton switching, symmetric and asymmetric 
scattering [34]. 

 
 
4. Recent developments 
 
Trains of spatiotemporal localized structures have 

been recently predicted in Raman-active optical media due 
to spatiotemporal coupling induced by the four-wave 
mixing phenomenon [49]. It is worthy to mention that in 
the majorities of studies of light bullet formation the same 
nonlinear mechanism counteracts beam difraction and 
GVD, implying that he characteristic length of difraction, 
dispersion and nonlinearity must be matched as a 
necessary condition for the formation of spatiotemporal 
solitons. However, recently it was put forward new 
approach for constructing spatiotemporal pulse-train 
solitons, which is based on employing slow nonlinearities 
for removing the condition that the dispersion length must 
be equal to the diffraction length [50]. The pulses were 
collectively trapped in the transverse direction by a slow 
nonlinearity, which facilitates the soliton stability, and 
each pulse is self-trapped in the longitudinal direction by a 
fast nonlinearity. In Ref. [50] the characteristic length of 
the slow nonlinearity corresponds to the diffraction length, 
while the length of the fast nonlinearity matches the 
dispersion length (the diffraction length is much shorter 
than the dispersion length in this physical setting).  

Another possibility to get stable light bullets comes 
from the interplay of local and nonlocal nonlinearities 
[51]. The concept of accessible light bullets via synergetic 
optical nonlinearities (nonlocal, non-instantaneous 
nonlinearity combined with an instantaneous Kerr-type 
nonlinear response) was put forward in Ref. [51]. By 
extensive numerical calculations it was demonstrated that 
(3+1)-dimensional light bullets and anti-bullets can be 
generated in reorientational media with a cubic electronic 
nonlinearity, such as liquid crystals in the nematic phase, 
under experimentally feasible conditions [51]. 

A potential approach to form stable 3D light bullets 
might be based on the concept of engineered structures 
composed of different optical materials featuring either 
strong nonlinearity or strong suitable GVD but not 
necessarily both together at a given wavelength [52]. The 
implementation of such idea along the propagation 
(longitudinal) direction showed that light bullet formation 
is possible for significantly large tandem domains in the 
case of quadratic spatiotemporal solitons [52].  

Very recently, it was shown that stable 3D light 
bullets do form in transverse radially periodic 
metamaterial structures consisting of alternating rings 

made of highly dispersive linear materials and rings made 
of strongly nonlinear media (with cubic saturable optical 
nonlinearities) [53].  It was found that light bullet stability 
depends crucially on whether the central domain is linear 
or nonlinear; though stabilization in optical tandems with a 
nonlinear central domain is still possible, the 
corresponding stability region in terms of nonlinear wave 
number is quite narrow, and stabilization occurs at much 
higher powers than in optical tandems with a linear central 
domain. The key result reported in Ref. [53] is that (3+1)-
dimensional light bullets do form in suitable metamaterial 
structures where the different materials are used at their 
best to meet the requirements needed to get light bullets in 
practice.  

As concerning the possible practical implementation 
of the light bullet concept we mention here a quite realistic 
physical setting involving silicon nanowires [54]. The 
conditions for low-power spatiotemporal soliton formation 
in arrays of evanescently-coupled silicon-on-insulator 
(SOI) photonic nanowires have been thoroughly analyzed 
recently [54]. It was shown that pronounced soliton effects 
can be observed even in the presence of realistic loss, two-
photon absorption, and higher-order GVD. The well 
established SOI technology offers an exciting opportunity 
in the area of spatiotemporal optical solitons because a 
strong anomalous GVD can be achieved with nanoscaled 
transverse dimensions and moreover, the enhanced 
nonlinear response resulting from this tight transverse 
spatial confinement of the electromagnetic field leads to 
soliton peak powers of only a few watts for 100-fs pulse 
widths (the corresponding energy being only a few 
hundreds fJ). It is worthy to note that the arrays of SOI 
photonic nanowires seem to be most adequate for the 
observation of discrete surface light bullets because a 
suitable design of nanowaveguides can provide dispersion 
lengths in the range of 1 mm and coupling lengths of a few 
millimeters (for 100-fs pulse durations) [54].  

The study of fully three-dimensional light bullets in 
materials with simultaneous modulation of the linear 
refractive index and of the nonlinearity is of increasing 
interest [55] because the relevant physical settings where 
stable three-dimensional solitons exist are relatively rare 
[4]. Moreover, since three-dimensional solitons in cubic 
(Kerr-like) nonlinear media suffer from supercritical 
collapse [8]-[9], addition of a linear optical lattice results 
in their stabilization only in a certain limited range of 
relevant parameters. It is therefore expected that the 
additional modulation of the cubic optical nonlinearity 
may dramatically affect the domains of existence and 
stability of spatiotemporal optical solitons. Recently, it 
was investigated an interesting physical setting with 
competing linear and nonlinear lattices, where the 
refractive index is decreased in the points where the 
nonlinearity is strongest [55]. Thus it was investigated the 
stability of spatiotemporal optical solitons supported by 
Bessel optical lattices with out-of-phase modulation of the 
linear and nonlinear refractive indices. It was shown that 
the spatial modulation of the nonlinear refractive index 
significantly modifies both the shapes and the stability 
domains of the light bullets. However, it has been proven 
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that the fully three-dimensional light bullets forming in a 
two-dimensional Bessel lattice can be stable, provided that 
the peak intensity does not exceed a certain critical value 
[55]. Moreover, it was found that the width of the stability 
domain in terms of the propagation constant may be 
controlled by varying the nonlinearity modulation depth 
and that the maximum energy at which the spatiotemporal 
optical solitons remain stable increases with the depth of 
the nonlinearity modulation. An interesting result obtained 
in Ref. [55] is that the so-called Vakhitov-Kolokolov 
stability criterion accurately predicts the domains of 
stability and instability only when the nonlinearity 
modulation depth parameter is not too strong. 

As I said before, spatiotemporal solitons forming in 
dissipative media (dissipative light bullets) have also 
attracted a lot of attention in the past few years. It is 
worthy to mention a recent work where  spatiotemporal 
necklace-shaped patterns with annular or radial phase 
modulation were theoretically studied [56] in two relevant 
physical settings: (a) dissipative media governed by the 
three-dimensional complex Ginzburg-Landau equation, 
and (b) dissipative systems described by the three-
dimensional complex Swift-Hohenberg equation. It was 
demonstrated that spatiotemporal necklace-shaped patterns 
with annular phase modulation can fuse into stable 
fundamental or vortex solitons in both dynamical 
dissipative models mentioned above, when the initial 
radius of the necklace is smaller than a critical value, 
which is similar to the fusion of two-dimensional 
necklace-shaped patterns into stable fundamental or vortex 
solitons in a similar complex Ginzburg-Landau equation, 
see, e.g., Ref. [57]. Moreover, it was shown in Ref. [56] 
that when a radial phase modulation is added to the 
spatiotemporal necklace-shaped pattern, the modulated 
“bead” (that is, one of the elements forming the ring 
structure) will move either towards or off the center of the 
necklace and will rapidly vanish due to the presence of 
dissipation in the system.  The formation of stable 
dissipative light bullets in  the degenerate optical 
parametric oscillator was also studied [58]. We recently 
considered continuous-discrete spatiotemporal models 
described by the complex Ginzburg-Landau equation [59]-
[60]. Thus the presence of gain and loss due to optical 
amplifiers and saturable absorbers in truncated one- and 
two-dimensional periodic photonic structures has been 
investigated and dissipative surface LBs were introduced 
in both one-dimensional waveguide arrays [59] and in 
two-dimensional photonic lattices [60]. The domains of 
existence and stability of in-phase (unstaggered) on-site 
(single-peaked), inter-site (double-peaked) and flat-top-
like (four-peaked) dissipative LBs in 2D photonic lattices 
were determined and the various instability-induced 
scenarios of the dynamics of these discrete Ginzburg-
Landau spatiotemporal optical solitons were described 
[61]. Further, systematic results of collisions between 
discrete spatiotemporal Ginzburg-Landau solitons were 
reported [62]. The generic outcomes of collisions between 
both co-rotating [63] and counter-rotating [64] vortex 
solitons and between nonspinning and spinning [65] co-
axial 3D dissipative LBs  described by the complex 

Ginzburg-Landau equation with the cubic-quintic 
nonlinearity were recently presented.  

It is also relevant to mention the study of the so-called 
nonlinear X-waves [66]. This is a generalization of the 
diffraction-free propagation of Bessel beams [67] in a 
linear medium to the polychromatic case. Thus it was 
discovered [66] that a quasilocalized light pattern can 
spontaneously emerge from unstable propagation of a 
short pulse in a quadratic nonlinear crystal with normal 
GVD and large group-and phase-velocity mismatches. 
Recently, direct spatiotemporal measurements of 
accelerating and decelerating ultrashort Bessel-type LBs 
with micron spatial resolution and femtosecond temporal 
resolution have been performed [68]. The existence of 
generic LBs compressed to the few-cycle limit in the 
filamentation regime with no external compressor system 
has been numerically demonstrated [69]. These few-cycle 
LBs  can be formed in gaseous as well as dense media. 
Thus by coupling an infrared pump with a seed beam, 
tunable pulses with durations down to a few femtoseconds 
can be generated by parametric processes and propagate 
over long distances with a stable profile [69]. The 
observation of 3D discrete-continuous X-waves in 
photonic lattices (femtosecond laser-written waveguide 
arrays) has been reported recently [70]. These 
measurements constitute, to the best of my knowledge, the 
first experimental observation of temporally localized 3D 
discrete-continuous entities. Comprehensive theoretical 
studies of the existence, stability and interactions of 
spatiotemporal solitons and vortices in optical fiber 
bundles have been also reported [71]. In connection with 
these theoretical studies, the dynamics of spatiotemporal 
nonlinear localization in arrays of evanescently coupled 
silica fiber arrays, which form two-dimensional waveguide 
lattices, has been recently investigated and it was shown 
that in contrast to continuous systems the formation of 
stable LBs becomes possible [72]. 

 
 
5. Conclusions 
 
I conclude with the hope that this brief overview on 

recent exciting theoretical developments in the area of 
multidimensional localized structures in optics will inspire 
further theoretical and experimental investigations. Also, I 
do believe that interesting times have arrived for the field 
of light bullets. 
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